NTMS4101P

Trench Power MOSFET

20 V, 9.0 A, Single P-Channel, SO-8

Features

- Leading -20 V Trench for Low R_{DS(on)}
- Surface Mount SO-8 Package Saves Board Space
- Lead-Free Package for Green Manufacturing (G Suffix)

Applications

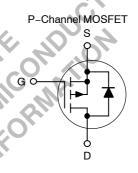
- Power Management
- Load Switch
- Battery Protection

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	-20	V
Gate-to-Source Voltage		V _{GS}	±8.0	V
Continuous Drain Current	Steady State		-6.9	
Continuous Drain Current	t ≤ 10 s	ID	-9.0	Α
Pulsed Drain Current	t = 10 μs	I _{DM}	-30	Α
Power Dissipation	Steady State	P_{D}	1.38	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	ဗို
Continuous Source Current (Body Diode)		I _S	-6.9	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		TL	260	°C

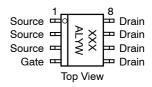
THERMAL RESISTANCE RATINGS

Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	90	°C/W
Junction-to-Ambient - t ≤ 10 s (Note 1)	$R_{ heta JA}$	50	


^{1.} Surface-mounted on FR4 board using 1" sq. pad size (Cu. area = 1.127 in. sq. [1 oz.] including traces).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-20 V	▶ 16 mΩ @ −4.5 V	-9.0 A
20 (22 mΩ @ -2.5 V	3.071

MARKING DIAGRAM & PIN ASSIGNMENT

SO-8 **CASE 751** STYLE 12

XXX = Specific Device Code = Assembly Location

= Wafer Lot = Year

= Work Week

Device	Package	Shipping
NTMS4101PR2	SO-8	2500/Reel
NTMS4101PR2G	SO-8 (Pb-Free)	2500/Reel

ORDERING INFORMATION

NTMS4101P

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = -250 \mu\text{A}$	V _{(BR)DSS}	-20			V
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = -16 V	I _{DSS}			-10	μΑ
Gate-to-Source Leakage Current	V _{GS} = ±8.0 V, V _{DS} = 0 V	I _{GSS}			±100	nA
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	V _{GS(th)}	-0.45			V
Drain-to-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -6.9 \text{ A}$	R _{DS(on)}		16	19	mΩ
	$V_{GS} = -2.5 \text{ V}, I_D = -6.5 \text{ A}$			22	30	
Forward Transconductance	$V_{DS} = -15 \text{ V}, I_D = -6.9 \text{ A}$	9FS		70		S
CHARGES AND CAPACITANCES		4 1 7				
Input Capacitance		C _{iss}		3200	0	pF
Output Capacitance	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = -10 \text{ V}$	C _{oss}		320		
Reverse Transfer Capacitance		C _{rss}		192)	1
Total Gate Charge		Q _{G(TOT)}		29.5	32	nC
Gate-to-Source Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -6.9 \text{ A}$	Q _{GS}	V 3	6.0	1	
Gate-to-Drain Charge		Q_{GD}	.0	7.5		
SWITCHING CHARACTERISTICS (Note	3)		, O.	D ,		
Turn-On Delay Time		t _{d(on)}		12.5		ns
Rise Time	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$	Ę.	,O,	9.0		1
Turn-Off Delay Time	$I_D = -1.0 \text{ A}, R_G = 6.0 \Omega$	t _{d(off)}	X	144		1
Fall Time		t _f		38.5		
DRAIN-SOURCE DIODE CHARACTER	STICS	0				
Forward Diode Voltage	$V_{GS} = 0 \text{ V, } l_S = -6.9 \text{ A}$	V _{SD}		0.72	0.95	V
Reverse Recovery Time	00/4/16	t _{rr}		28	35	ns
Charge Time	$V_{GS} = 0 \text{ V}, V_{DS} = -10 \text{ V},$	ta		12		
Discharge Time	$dl_S/dt = 100 \text{ A/}\mu\text{s}, l_S = -6.9 \text{ A}$	t _b		15		1
Reverse Recovery Charge		Q _{rr}		.017		nC

Pulse Test: Pulse Width ≤[300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

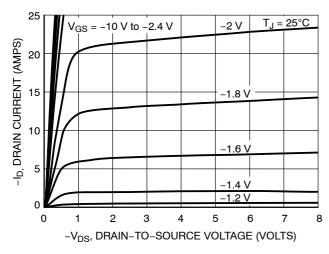


Figure 1. On-Region Characteristics

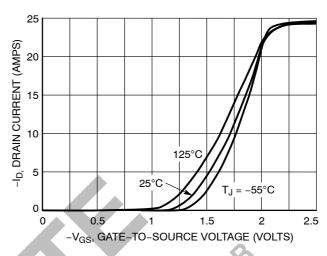


Figure 2. Transfer Characteristics

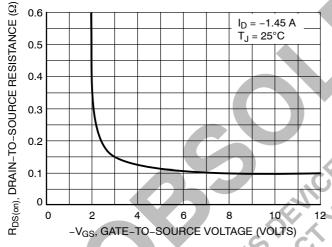


Figure 3. On-Resistance vs. Gate-to-Source Voltage

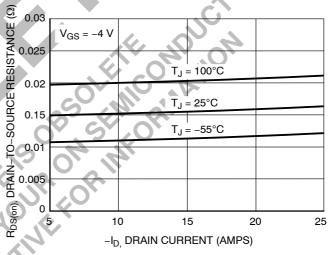


Figure 4. On–Resistance vs. Drain Current and Temperature

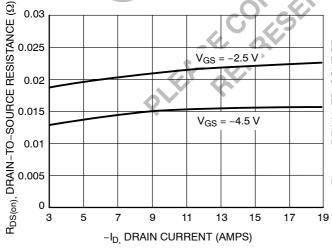


Figure 5. On-Resistance vs. Drain Current and Gate Voltage

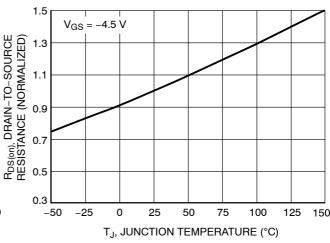
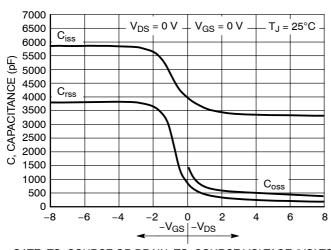



Figure 6. On–Resistance Variation with Temperature

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

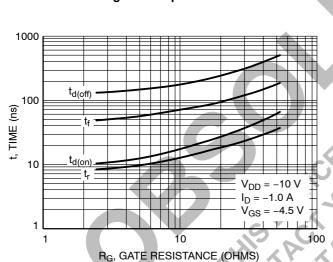


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

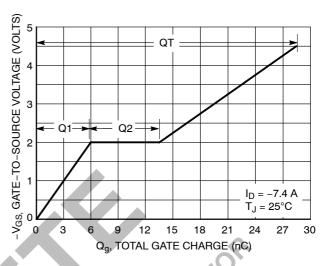


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

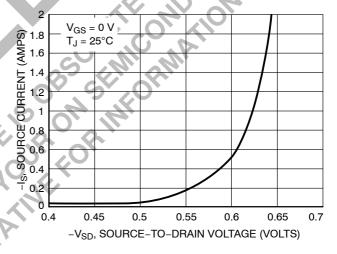


Figure 10. Diode Forward Voltage vs. Current

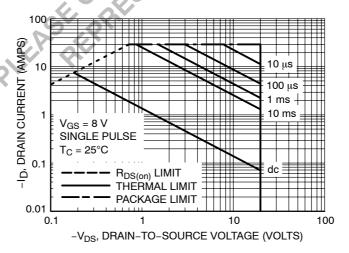
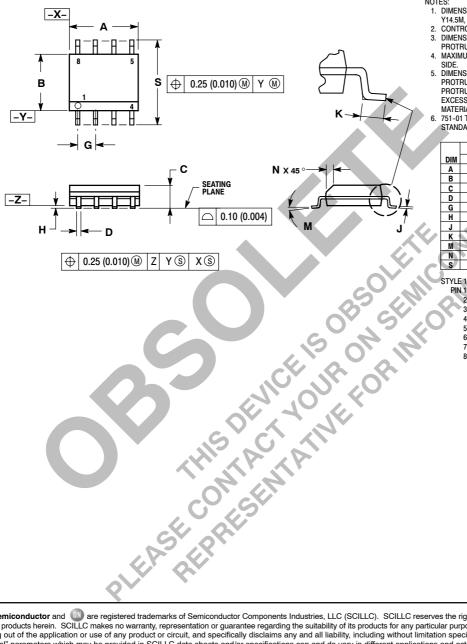



Figure 11. Maximum Rated Forward Biased Safe Operating Area

NTMS4101P

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AA**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE, NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
U	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
H	0.10	0.25	0.004	0.010	
7	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0	. 8°	0 °	8 °	
8	0.25	0.50	0.010	0.020	
g	5.80	6.20	0.228	0.244	

- SOURCE
 - SOURCE SOURCE
- GATE
- DRAIN DRAIN
- DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative