N

MICROCHIP

MPLAB® XC8 C Compiler
User’s Guide

00000000000

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 cetrtification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= 1S0/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KeeLoa logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad 1/0, SMART-1.S., SQl,
SuperSwitcher, SuperSwitcher I, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany Il GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2012-2016, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-1085-0

DS50002053G-page 2

© 2012-2016 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER’S GUIDE

Table of Contents

= - 1o = O 7
Chapter 1. Compiler Overview
T INtrodUCHION ... 13
1.2 Compiler Description and Documentationccccocciiiiiiiiiiiiiiiiiinns 13
1.3 Device DesCriptioncooooiiiii i 14
Chapter 2. Common C Interface
P20 B 1010 Yo [T 1o) o 15
2.2 Background — The Desire for Portable Codeccccocciiiiiiiiiiiiiiiiiecee, 15
2.3 USING T CCl ..oeeiiiiiii et e e e e b ae s sesassseeeeeeesseeeeeeseeeeees 18
2.4 ANSI Standard Refinementovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 19
2.5 ANSI Standard EXIENSIONScoieeeiiiiiiiiiiiee e e e 27
2.6 ComPiler FEAUIESuuuiiiiiiiiiiiiiiiiiiiiiie ittt ee e e e eeeeeeeeeeeeeeeees 41
Chapter 3. How To’s
K 20t I [o1 Yo [e (o) o T 43
3.2 Installing and Activating the Compiler ... 43
3.3 INvOKING the COMPIIETueeeiiiiiiiiiiiieeieeeeeeee e e e e e e e e e e e e e e e 45
3.4 Writing SOUICE COUEuuiiiiiiiiiiiiii et 48
3.5 Getting My Application to Do What I Wantccccccoviiiii, 60
3.6 Understanding the Compilation Processcccvevviieiiiiiiiiiiiiiiiiiieeeieeeeeeeenn 65
3.7 Fixing Code That Does NOot WOrKcooviiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeee e 73
Chapter 4. XC8 Command-line Driver
4.1 INtrodUCHION ... e 77
4.2 Invoking the COmMPIIErccoiiiiiiii s 78
4.3 The Compilation SEQUENCEccooeeiiiiiceec e 81
4.4 RUNtIME FIleS oo e 87
4.5 Compiler QUIPUL ... 88
4.6 Compiler MESSAJEScccoiieiiiie e 90
4.7 MPLAB XC8 Driver Optionsccooiiiiiiiieii e 95
4.8 Option DESCIIPLIONSeiiiiieieiiiiiiiiie e e et e e e e e e eenreeeeeeeeeeeanes 96
4.9 MPLAB X Option Equivalentsccooooiiiiiiiiiiiieeeeeeeece s 126
Chapter 5. C Language Features
S0t I [V o Yo [8 e (o o TSR 135
5.2 ANSI C Standard ISSUESuuuuuiuumimiiiuiiiiiiiiieirieeirieeeeereeereeeeeereereeeee. 135
5.3 Device-Related Features ... 137
5.4 Supported Data Types and Variablescccccvvveiviiiiiiiiiiiiiiiiieeieeeeeeeeeeeee 149
5.5 Memory Allocation and ACCESSooevuiiiiiiii e eeaeens 170
5.6 Operators and Statementscccevviiiiiiiiiiiiiiiiieeeeeeeeeee e 187

© 2012-2016 Microchip Technology Inc. DS50002053G-page 3

MPLAB® XC8 C Compiler User’s Guide

5.7 REQISIEr USAQJE ...t 189
5.8 FUNCLIONS .. e 190
B9 INtErruPtS oo 200
5.10 Main, Runtime Startup and Resetcccc 210
5.4 LIDrari©s ... 214
5.12 Mixing C and AsSembly COUEcouiiiiiiiiiiiiiiiee e 216
5.13 Optimizationscoovuuiii i 228
LT e =T o] o Tt T 1] o o PP 230
5.15 LinKing Programscoo oo 241
Chapter 6. Macro Assembler
6.1 INtrOAUCLION ... 265
6.2 MPLAB XC8 Assembly Languagec.ooccuuiiimiieiiiiiiiiieeeeee e 266
6.3 Assembly-Level Optimizationsccccc 294
6.4 Assembly List Filesooooiiiiiii 295
Chapter 7. Linker
7.1 INtrodUCHION ooooeiiiiiie 305
T7.20PEratioN ..ooeeeeeeeeee e, 305
7.3 Relocation and PSECESooooiiiiiiiiii, 313
TAMAP FIleS ..o 314
Chapter 8. Utilities
8.1 INtrOAUCHION ... 319
8.2 LIDrarian ..o e eeaan 320
8.3 HEXMATE ...t e e e e e e eeas 323
8.4 Hash FUNCLIONS ... et 332
Appendix A. Library Functions
N I 111 e T 1B e T o PP 339
Appendix B. Embedded Compiler Compatibility Mode
B.1 INtrodUCLION ... e 431
B.2 Compiling in Compatibility Modeccoooiiiiiiiiis 431
B.3 Syntax Compatibilitycoooumiiiiiii e 432
o I = = T 1Y/ o= 433
B.5 OPErator ... 433
B.6 Extended KEYWOIdScooiiiiiiiiieicce et e e 434
B.7 IntrinSiC FUNCHIONS ooovviie e 435
G I = (e .= T U 436
Appendix C. Error and Warning Messages
L2 I o 1o o [F]ox i o] o RO 437
Appendix D. Implementation-Defined Behavior
D.1INtrodUCHioNcoooiiii 565
D.2 Translation (G.3.1) ...ueeiiiiiiiiiiiiee e 565
D.3 Environment (G.3.2) ...coooiiiiiiii i 565
D.4 1dentifiers (G.3.3) .uuuriiiiiie i e e e 566
D.5 Characters (G.3.4) ...coooiiiiii i 566

DS50002053G-page 4 © 2012-2016 Microchip Technology Inc.

Table of Contents

D.6 INteers (G.3.5) ooiiiiiiiii e 567
D.7 Floating-Point (G.3.6) ...ccoovvviiiiiiiiiiiieeeee 568
D.8 Arrays and Pointers (G.3.7) ...occcuuiiiiiieeeiiiie e 568
D.9 Registers (G.3.8) ..o 568
D.10 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) 569
D.11 QUAlIfiers (G.3.10) ...uueeiiiiieiieiieiee e e e e e e 569
D.12 Declarators (G.3.11) .o 569
D.13 Statements (G.3.12) ..o 569
D.14 Preprocessing Directives (G.3.13) ...ooooiiiiiiiieeiiiieeeeecee e 570
D.15 Library Functions (G.3.14) ... 571
€ 0T 7 573
3 o 1= 593
Worldwide Sales and Serviceicciiiiiiiiiiiiiirrrrrrr s snnnanas 606

© 2012-2016 Microchip Technology Inc. DS50002053G-page 5

MPLAB® XC8 C Compiler User’s Guide

NOTES:

DS50002053G-page 6 © 2012-2016 Microchip Technology Inc.

MPLAB® XC8 C COMPILER

MICROCHIP USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

document.

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions can differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
MPLAB® XC8 C Compiler User’s Guide. Items discussed in this chapter include:

Document Layout

Conventions Used in this Guide

Recommended Reading

Recommended Reading

The Microchip Web Site

Development Systems Customer Change Notification Service
Customer Support

Document Revision History

DOCUMENT LAYOUT
The MPLAB XC8 C Compiler User’s Guide is organized as follows:

Chapter 1. Compiler Overview

Chapter 2. Common C Interface

Chapter 3. How To’s

Chapter 4. XC8 Command-line Driver

Chapter 5. C Language Features

Chapter 6. Macro Assembler

Chapter 7. Linker

Chapter 8. Utilities

Appendix A. Library Functions

Appendix B. Embedded Compiler Compatibility Mode
Appendix C. Error and Warning Messages
Appendix D. Implementation-Defined Behavior
Glossary

Index

© 2012-2016 Microchip Technology Inc. DS50002053G-page 7

MPLAB® XC8 C Compiler User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris theradixand nis a
digit.

4'p0010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl18\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New

A variable argument

file.o, where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)

{
}

DS50002053G-page 8

© 2012-2016 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user’s guide describes how to use MPLAB XC8 C Compiler. Other useful docu-
ments are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme for MPLAB XC8 C Compiler

For the latest information on using MPLAB XC8 C Compiler, read MPLAB® XC8 C
Compiler Release Notes (an HTML file) in the Docs subdirectory of the compiler’s
installation directory. The release notes contain update information and known issues
that cannot be included in this user’s guide.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that cannot be included in this user’s
guide.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

© 2012-2016 Microchip Technology Inc. DS50002053G-page 9

MPLAB® XC8 C Compiler User’s Guide

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata that are related to a specified product family or
development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembiler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

+ Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3
debug express.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB
ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included
are nonproduction development programmers such as PICSTART® Plus and
PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

* Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support

DS50002053G-page 10 © 2012-2016 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com/support

Preface

DOCUMENT REVISION HISTORY
Revision G (November 2016)

» Expanded sections on interrupts to deal with new devices with vector tables
* Added new driver option -—UNDEFINTS and ivt suboption to -—-RUNTIME
» Added details on new assembler instructions and directives

+ Clarified usage of EEPROM functions

» Added new errata workaround information

» Updated MPLAB X IDE optimizations project properties dialog

» Expanded section on HEXMATE hash algorithms

* Added new error and warning messages

Revision F (December 2015)

* Added new “How To’s”

* Added new driver option, --DEP, expanded --0OPT, and updated -V option
» Updated predefined macros table

 Improved function allocation sections

» Added descriptions of new ‘relaxed’ 32-bit floating-point routines; new
___fpnormalize function

» Added EXTRN assembler directive

* Expanded assembly optimizations section

+ Added new section on writing reentrant assembly routines with parameters
» Revised the sections relating to the main linker options used to link psects
» Added new section on HEXMATE algorithms; included new examples

* Added new error and warning messages

Revision E (January 2015)

* Added new “How To’s”

* Detailed the compiler’s use of hardware multiply instructions

» Updated information relating to psect definitions and their effect on optimizations
» Corrected information relating to maximum reentrant-function stack sizes

» Updated compiler warning and error messages; improved message descriptions
relating to fixup errors and malformed arrays

» Added further information relating to customizing user-defined psects

* Improved printf library function description and expanded code example
* Added new --MAXIPIC and --NOFALLBACK options

* Many general corrections and improvements

© 2012-2016 Microchip Technology Inc. DS50002053G-page 11

MPLAB® XC8 C Compiler User’s Guide

Revision D (Dec 2013)

» Added new information relating to the software stack and function reentrancy.
+ Added information relating to code profiling features offered by the compiler.
* Removed information pertaining to MPLAB 8 IDE.

» Added new “How To’s”

* Removed sections on OBJTOHEX and CROMWELL.

+ Added additional information relating to assembly code formats and operators.
 Corrected Fletcher algorithms used by HEXMATE.

» Added new driver options and updated existing option descriptions.

» Added and updated macros, built-ins and functions in Library Function chapter.

* Updated compiler warning and error messages.

Revision C (May 2013)

* Added Embedded Compiler Compatibility Mode chapter.

» Added information relating to new ELF/DWARF debugging files.

» Added new driver options and updated existing option descriptions.
» Updated MPLAB X IDE option dialog descriptions relating to compiler options.
» Expanded information relating to the available optimizations.

» Added code to illustrate algorithms used by HEXMATE.

» Updated compiler warning and error messages.

» Updated information relating to list and map file contents.

» Added information about multiplication routines.

+ Expanded information about eeprom variables and bit objects.

* Expanded information relating to the configuration pragma.

+ Added information and examples using the section () specifier.

» Expanded and extended information relating to assembly code deviations and
assembler directives.

Revision B (July 2012)

* Added How To’s chapter.

» Expanded section relating to PIC18 erratas.

* Updated the section relating to compiler optimization settings.

» Updated MPLAB v8 and MPLAB X IDE project option dialogs.

» Added sections describing PIC18 far qualifier and in-line function qualifier.
» Expanded section describing the operation of the main() function

+ Expanded information about equivalent assembly symbols for Baseline parts.
» Updated the table of predefined macro symbols.

* Added section on #pragma addrqual

+ Added sections to do with in-lining functions

» Updated diagrams and text associated with call graphs in the list file

» Updated library function section to be consistent with packaged libraries

» Added new compiler warnings and errors.

» Added new chapter describing the Common C Interface Standard (CCI)

Revision A (February 2012)

Initial release of this document.

DS50002053G-page 12 © 2012-2016 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 1. Compiler Overview

1.1 INTRODUCTION

This chapter is an overview of the MPLAB® XC8 C Compiler, including these topics.

» Compiler Description and Documentation
* Device Description

1.2 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC8 C Compiler is a free-standing, optimizing ISO C90 (popularly known
as ANSI C) compiler. It supports all 8-bit PIC® microcontrollers: PIC10, PIC12, PIC16
and PIC18 series devices, as well as the PIC14000 device.

The compiler is available for several popular operating systems, including 32- and
64-bit Windows® and Mac OS® X 10.5. The compiler might also run on the various
Linux® distributions, such as Oracle Enterprise Linux 5, Ubuntu 8.x and 10.04, Red Hat
Enterprise Linux.

The compiler is available in three operating modes: Free, Standard or PRO. The Stan-
dard and PRO operating modes are licensed modes and require a serial number to
enable them. Free mode is available for unlicensed customers. The basic compiler
operation, supported devices and available memory are identical across all modes.
The modes only differ in the level of optimization employed by the compiler.

1.2.1 Conventions

Throughout this manual, the term “compiler” is used. It can refer to all, or a subset of,
the collection of applications that comprise the MPLAB XC8 C Compiler. When it is not
important to identify which application performed an action, it will be attributed to “the
compiler”.

In a similar manner, “compiler” is often used to refer to the command-line driver;
although specifically, the driver for the MPLAB XC8 C Compiler package is named xcS8.
The driver and its options are discussed in Section 4.7 “MPLAB XC8 Driver Options”.
Accordingly, “compiler options” commonly refers to command-line driver options.

In a similar fashion, “compilation” refers to all or a selection of steps involved in
generating an executable binary image from source code.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 13

MPLAB® XC8 C Compiler User’s Guide

1.3 DEVICE DESCRIPTION

This compiler supports 8-bit Microchip PIC devices with baseline, mid-range,
Enhanced mid-range, and PIC18 cores. The following descriptions indicate the
distinctions within those device cores:

The baseline core uses a 12-bit-wide instruction set and is available in PIC10, PIC12
and PIC16 part numbers.

The enhanced baseline core also uses a 12-bit instruction set, but this set includes
additional instructions. Some of the enhanced baseline chips support interrupts and the
additional instructions used by interrupts. These devices are available in PIC12 and
PIC16 part numbers.

The mid-range core uses a 14-bit-wide instruction set that includes more instructions
than the baseline core. It has larger data memory banks and program memory pages,
as well. It is available in PIC12, PIC14 and PIC16 part numbers.

The Enhanced mid-range core also uses a 14-bit-wide instruction set but incorporates
additional instructions and features. There are both PIC12 and PIC16 part numbers
that are based on the Enhanced mid-range core.

The PIC18 core instruction set is 16 bits wide and features additional instructions and
an expanded register set. PIC18 core devices have part numbers that begin with
PIC18.

The compiler takes advantage of the target device’s instruction set, addressing modes,
memory, and registers whenever possible.

See Section 4.8.19 “--CHIPINFO: Display List of Supported Devices” for information on
finding the full list of devices that are supported by the compiler.

DS50002053G-page 14

© 2012-2016 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 2. Common C Interface

21 INTRODUCTION

The Common C Interface (CCl) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCl-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCl assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CCl, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s
Guide:

» Background — The Desire for Portable Code
» Using the CCI

» ANSI Standard Refinement

» ANSI Standard Extensions

» Compiler Features

2.2 BACKGROUND - THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler
version can change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 15

MPLAB® XC8 C Compiler User’s Guide

2.21 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools, and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform.
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would lose its effectiveness.

1

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined | This is unspecified behavior in which each
behavior implementation documents how the choice is made.

Unspecified behavior | The standard provides two or more possibilities and
imposes no further requirements on which possibility is
chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no
requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an
int, which was used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an int is defined by which com-
piler is being used, how that compiler is being used, and the device that is being
targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for program-
ming languages (with the exception of the MPLAB XC8 compiler’s inability to allow
recursion, as mentioned in the footnote). This is commonly called the C89 Standard.
Some features from the later standard, C99, are also supported.

1. For example, the mid-range PIC® microcontrollers do not have a data stack. Because a compiler
targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI
C Standard. This example illustrates a situation in which the standard is too strict for mid-range
devices and tools.

DS50002053G-page 16

© 2012-2016 Microchip Technology Inc.

Common C Interface

For freestanding implementations (or for what we typically call embedded applications),
the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the | The CCIl documents specific behavior for some code in which
ANSI C Standard |actions are implementation-defined behavior under the ANSI
C Standard. For example, the result of right-shifting a signed
integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device
characteristics, such as the size of an int, are not defined by
the CCI.

Consistent syntax | The CCI non-standard extensions are mostly implemented
for non-standard |using keywords with a uniform syntax. They replace keywords,
extensions macros and attributes that are the native compiler implementa-
tion. The interpretation of the keyword can differ across each
compiler, and any arguments to the keywords can be device
specific.

Coding guidelines | The CCI can indicate advice on how code should be written so
that it can be ported to other devices or compilers. While you
may choose not to follow the advice, it will not conform to the
CCl.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 17

MPLAB® XC8 C Compiler User’s Guide

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCl is something you choose to follow and put into effect, thus it is relevant for new
projects, although you can choose to modify existing projects so they conform.
For your project to conform to the CCI, you must do the following things.

» Enable the CCI
Select the MPLAB X IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

* Include <xc.h> in every module
Some CCI features are only enabled if this header is seen by the compiler.

* Ensure ANSI compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

* Observe refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

» Use the CCI extensions to the language
Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are
indicated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses, and 24-bit short long types are not part of the CCl. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate a non-CCl feature has been used and the CCl is enabled.

DS50002053G-page 18

© 2012-2016 Microchip Technology Inc.

Common C Interface

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

241 Source File Encoding

Under the CClI, a source file must be written using characters from the 7-bit ASCII set.
Lines can be terminated using a line feed (\n') or carriage return ('\r') that is immediately
followed by a line feed. Escaped characters can be used in character constants or

string literals to represent extended characters that are not in the basic character set.

2411 EXAMPLE

The following shows a string constant being defined that uses escaped characters.
const char myName[] = "Bj\370rk\n";

2.41.2 DIFFERENCES

All compilers have used this character set.

2413 MIGRATION TO THE CCI

No action required.

242 The Prototype for main
The prototype for the main () function is:
int main (void) ;

2421 EXAMPLE

The following shows an example of how main () might be defined:

int main (void)
{
while (1)
process () ;

}

2422 DIFFERENCES

The 8-bit compilers used a void return type for this function.
2423 MIGRATION TO THE CClI

Each program has one definition for the main () function. Confirm the return type for
main () in all projects previously compiled for 8-bit targets.

243 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2431 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"

© 2012-2016 Microchip Technology Inc. DS50002053G-page 19

MPLAB® XC8 C Compiler User’s Guide

2.43.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors “\” were used and the code was compiled under other host operating systems.
Under the CCI, no directory separators should be used.

2433 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB X IDE equivalent. This will
force the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:
#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your
MPLAB X IDE project properties, or on the command-line as follows:

-Ilcd

244 Include Search Paths

When you include a header file under the CCl, the file should be discoverable in the
paths searched by the compiler that are detailed below.

Header files specified in angle bracket delimiters < > should be discoverable in the
search paths that are specified by - T options (or the equivalent MPLAB X IDE option),
or in the standard compiler include directories. The -1 options are searched in the
order in which they are specified.

Header files specified in quote characters " " should be discoverable in the current
working directory or in the same directories that are searched when the header files are
specified in angle bracket delimiters (as above). In the case of an MPLAB X project, the
current working directory is the directory in which the C source file is located. If unsuc-
cessful, the search paths should be to the same directories searched when the header
file is specified in angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2441 EXAMPLE

If including a header file, as in the following directive:
#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any - I options, or the standard compiler directories. A header file being located
elsewhere does not conform to the CCI.

2442 DIFFERENCES
The compiler operation under the CCl is not changed. This is purely a coding guideline.

2443 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the - T option (or
the equivalent MPLAB X IDE option), and use the -1 option in place of this. Ensure the
header file can be found in the directories specified in this section.

DS50002053G-page 20

© 2012-2016 Microchip Technology Inc.

Common C Interface

245 The Number of Significant Initial Characters in an ldentifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard that states a lower number
of significant characters are used to identify an object.

2451 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2452 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant
characters.

2453 MIGRATION TO THE CCI

No action required. You can take advantage of the less restrictive naming scheme.

246 Sizes of Types

The sizes of the basic C types, e.g., char, int and long, are not fully defined by the
CCI. These types, by design, reflect the size of registers and other architectural fea-
tures in the target device. They allow the device to efficiently access objects of this type.
The ANSI C Standard does, however, indicate minimum requirements for these types,
as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g.,
uint8 torintlé6_t. These types are consistently defined across all XC compilers,
even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using, or those that have a fixed size,
regardless of the target.

246.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow
efficient access on the target device; and a variable, fixed, whose size is clearly indi-
cated and remains fixed, even though it may not allow efficient access on every device.

int native;
intlé6 t fixed;

2.4.6.2 DIFFERENCES
This is consistent with previous types implemented by the compiler.

246.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <stdint.h>.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 21

MPLAB® XC8 C Compiler User’s Guide

247 Plain char Types

The type of a plain char is unsigned char. It is generally recommended that all
definitions for the char type explicitly state the signedness of the object.

2471 EXAMPLE
The following example
char foobar;

defines an unsigned char object called foobar.

24.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The
-funsigned-char option on those compilers changed the default type to be
unsigned char.

2473 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You can use the -funsigned-char option on MPLAB XC16 and XC32 to change the
type of plain char, but since this option is not supported on MPLAB XCS8, the code is
not strictly conforming.

248 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the
integer.

2481 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.
signed char test = 0xE4;

2.48.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2483 MIGRATION TO THE CCI

No action required.

249 Integer Conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2491 EXAMPLE

The following shows an assignment of a value that is truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignmentis -2 (i.e., the bit pattern
OxFE).

DS50002053G-page 22

© 2012-2016 Microchip Technology Inc.

Common C Interface

2.49.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2493 MIGRATION TO THE CCI

No action required.

2410 Bitwise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values”.

2.410.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND
operation.

signed char output, input = -13;
output = input & O0x7E;

Under the CCl, the value of output after the assignment is 0x72.
2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.410.3 MIGRATION TO THE CCI

No action required.

2411 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

24111 EXAMPLE

The following shows an example of a negative quantity involved in a right-shift
operation.

signed char output, input = -13;
output = input >> 3;

Under the CCl, the value of output after the assignment is -2 (i.e., the bit pattern
OxFE).

24.11.2 DIFFERENCES

All compilers have performed right-shifting as described in this section.

2.411.3 MIGRATION TO THE CCI

No action required.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 23

MPLAB® XC8 C Compiler User’s Guide

2412 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) is implementation-defined behavior in the standard. In the CCI, no conversion is
applied and the bytes of the union object are interpreted as an object of the type of the
member being accessed, without regard for alignment or other possible invalid
conditions.

24121 EXAMPLE

The following shows an example of a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract of fset by reading data is not guaranteed to read the
correct value.

float result;

result = foobbar.data;

24122 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.412.3 MIGRATION TO THE CCI

No action required.

2.413 Default Bit-field int Type

The type of a bit-field specified as a plain int is identical to that of one defined using
unsigned int. Thisis quite different from other objects where the types int, signed
and signed int are synonymous. It is recommended that the signedness of the
bit-field be explicitly stated in all bit-field definitions.

2.413.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields that are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;

}i
2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type int was used for bit-fields,
but would implement the bit-field with an unsigned int type.

The 16- and 32-bit compilers have implemented bit-fields defined using int as having
a signed int type, unless the option -funsigned-bitfields was specified.

DS50002053G-page 24

© 2012-2016 Microchip Technology Inc.

Common C Interface

2.413.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
signed int. For example, in the following example:

struct WAYPT {
int log 135
int direction 24,
}i
the bit-field type should be changed to signed int, asin:

struct WAYPT {
signed int log :3;
signed int direction :4;

}i
2414 Bit-fields Straddling a Storage Unit Boundary

The standard indicates that implementations can determine whether bit-fields cross a
storage unit boundary. In the CClI, bit-fields do not straddle a storage unit boundary; a
new storage unit is allocated to the structure, and padding bits fill the gap.

Note that the size of a storage unit differs with each compiler, as this is based on the
size of the base data type (e.g., int) from which the bit-field type is derived. On 8-bit
compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit
compilers, it is 32 bits in size.

24141 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {

unsigned first : 6;

unsigned second :6;
} order;
Under the CCI and using MPLAB XCS8, the storage allocation unit is byte sized. The
bit-field, second, is allocated a new storage unit since there are only 2 bits remaining
in the first storage unit in which first is allocated. The size of this structure, order,
is 2 bytes.

24142 DIFFERENCES

This allocation is identical with that used by all previous compilers.
24143 MIGRATION TO THE CClI

No action required.

2.4.15 The Allocation Order of Bit-fields

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCl, the first bit defined is the least significant bit of the storage unitin
which it is allocated.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 25

MPLAB® XC8 C Compiler User’s Guide

2.4151 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
unsigned lo : 1;
unsigned mid :6;
unsigned hi : 1;
} foo;

The bit-field 1o is assigned the least significant bit of the storage unit assigned to the
structure foo. The bit-field mi d is assigned the next 6 least significant bits; and h1i, the
most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES
This is identical with the previous operation of all compilers.

2.4.15.3 MIGRATION TO THE CCI

No action required.

2416 The NULL Macro

The NULL macro is defined by <stddef . h>; however, its definition is
implementation-defined behavior. Under the CClI, the definition of NULL is the expres-
sion (0).

2.416.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL
macro.

int * ip = NULL;
The value of NULL, (0), is implicitly converted to the destination type.
2.416.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).
2.4.16.3 MIGRATION TO THE CClI

No action required.

2417 Floating-point Sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

24171 EXAMPLE

The following shows the definition for outy, which is at least 32 bits in size.
float outY;

2.417.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit f1oat and double types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the f1oat and double type will automatically be made
32 bits in size once the CCl mode is enabled. Review any source code that may have
assumed a float or double type and may have been 24 bits in size.

No migration is required for other compilers.

DS50002053G-page 26

© 2012-2016 Microchip Technology Inc.

Common C Interface

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

2.5.1 Generic Header File

A single header file <xc.h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

2511 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCl, as well as allowing access to SFRs.

#include <xc.h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of
the 16- and 32-bit compilers used a variety of headers to do the same job.

2513 MIGRATION TO THE CCI

Change:
#include <htc.h>
previously used in 8-bit compiler code, or family-specific header files, e.g., from:

#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30£f6014.h"

to:

#include <xc.h>

2.5.2 Absolute Addressing

Variables and functions can be placed at an absolute address by using the at ()
construct. Stack-based (auto and parameter) variables cannot use the at ()
specifier.

2521 EXAMPLE

The following shows two variables and a function being made absolute.
int scanMode _ at (0x200);

const char keys[] at(124) = { 'r’, 's’, 'u’, "d"};

_at(0x1000) int modify (int x) {
return x * 2 + 3;

}
2522 DIFFERENCES

The 8-bit compilers have used an @ symbol to specify an absolute address.

The 16- and 32-bit compilers have used the address attribute to specify an object’s
address.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 27

MPLAB® XC8 C Compiler User’s Guide

2523 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In MPLAB XC8, change absolute object definitions, e.g., from:
int scanMode @ 0x200;

to:

int scanMode at (0x200);

In MPLAB XC16 and XC32, change code, e.g., from:

int scanMode attribute ((address(0x200))):;

to:

int scanMode at (0x200) ;

2524 CAVEATS
Ifthe at() and section() specifiers are both applied to an object when using
MPLAB XC8, the section () specifier is currently ignored.

The at () specifier must be placed at the beginning of function prototypes for the
16- and 32-bit compilers. If you prefer to use the specifier at the end of the prototype,
use the specifier with a declaration and leave it off the definition, for example:

int modify(int x) at(0x1000);
int modify(int x)

{ ...}

253 Far Objects and Functions

The _ far qualifier can be used to indicate that variables or functions are located in
‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far-qualified objects usually generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
___far specifier.

2.5.3.1 EXAMPLE

The following shows a variable and function qualified using far.

_ far int serialNo;
_ far int ext getCond(int selector);

2.5.3.2 DIFFERENCES

The 8-bit compilers have used the qualifier far to indicate this meaning. Functions
could not be qualified as far.

The 16-bit compilers have used the far attribute with both variables and functions.
The 32-bit compilers have used the far attribute with functions, only.

DS50002053G-page 28 © 2012-2016 Microchip Technology Inc.

Common C Interface

2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the far qualifier, e.g., from:

far char template[20];

to:

__far,i.e.,, far char template[20];

In the 16- and 32-bit compilers, change any occurrence of the far attribute, e.g., from:

void bar (void) _ attribute ((far));
int tblIdx attribute ((far));
to:

void ~ far bar(void);
int far tblIdx;

2534 CAVEATS

None.

254 Near Objects

The near qualifier can be used to indicate that variables or functions are located in
‘near memory’. Exactly what constitutes near memory is dependent on the target
device, but it is typically memory that can be accessed with less complex code. Expres-
sions involving near-qualified objects generally are faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
__near specifier.

2541 EXAMPLE

The following shows a variable and function qualified using near.

__near int serialNo;
__near int ext getCond(int selector);

2.54.2 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near.

The 16-bit compilers have used the near attribute with both variables and functions.
The 32-bit compilers have used the near attribute for functions, only.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 29

MPLAB® XC8 C Compiler User’s Guide

2.5.4.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifierto near, e.g., from:
near char template([20];

to:

__near char template[20];

In 16- and 32-bit compilers, change any occurrence of the near attribute to near,
e.g., from:

void bar(void) _ attribute ((near));
int tblIdx attribute ((near));

to:

void near bar(void);
int near tblIdx;

2544 CAVEATS

None.

255 Persistent Objects

The persistent qualifier can be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.
2551 EXAMPLE

The following shows a variable qualified using persistent.

__persistent int serialNo;

2552 DIFFERENCES

The 8-bit compilers have used the qualifier, persistent, to indicate this meaning.
The 16- and 32-bit compilers have used the persistent attribute with variables to
indicate they were not to be cleared.

2553 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the persistent qualifier to
__persistent, e.g., from:

persistent char template[20];
to:
___persistent char template[20];

For the 16- and 32-bit compilers, change any occurrence of the persistent attribute
to persistent, e.g., from:

int tblIdx attribute ((persistent));
to:

int persistent tblIdx;

2554 CAVEATS

None.

DS50002053G-page 30

© 2012-2016 Microchip Technology Inc.

Common C Interface

256 X and Y Data Objects

The xdataand _ ydata qualifiers can be used to indicate that variables are
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but it is typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the "Differences" section to look up information
on the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers is ignored.

256.1 EXAMPLE

The following shows a variable qualified using xdata, as well as another variable
qualified with ydata.

__xdata char datal[lé6];

__ydata char coeffs[4];

2.5.6.2 DIFFERENCES

The 16-bit compilers have used the xmemory and ymemory space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

2.5.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes xmemory or
ymemory t0 xdata, or _ ydata respectively, e.g., from:

char attribute ((space(xmemory)))template[20];
to:
__xdata char template[20];

2.5.6.4 CAVEATS

None.

257 Banked Data Objects

The bank (num) qualifier can be used to indicate that variables are located in a par-
ticular data memory bank. The number, num, represents the bank number. Exactly what
constitutes banked memory is dependent on the target device, but it is typically a sub-
division of data memory to allow for assembly instructions with a limited address width
field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented; in which case, use of
this qualifier is ignored. The number of data banks implemented will vary from one
device to another.

2571 EXAMPLE

The following shows a variable qualified using bank ().

__bank(0) char start;
__bank(5) char stop;

© 2012-2016 Microchip Technology Inc. DS50002053G-page 31

MPLAB® XC8 C Compiler User’s Guide

2.5.7.2 DIFFERENCES

The 8-bit compilers have used the four qualifiers bank0, bankl, bank2 and bank3 to
indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

25.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiersto _ bank (), e.g.,
from:

bank2 int logEntry;
to:
__bank(2) int logEntry;

25.74 CAVEATS
This feature is not yet implemented in MPLAB XC8.

258 Alignment of Objects

The align(alignment) specifier can be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of 2. Positive values request that the object’s start address
be aligned; negative values imply the object’'s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.58.1 EXAMPLE

The following shows variables qualified using align () to ensure they end on an
address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

25.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.
The 16- and 32-bit compilers used the aligned attribute with variables.
2.5.8.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the aligned attribute to
__align, e.g., from:

char _ attribute ((aligned(4)))mode;

to:

__align(4) char mode;

2.5.84 CAVEATS

This feature is not yet implemented on MPLAB XC8.

DS50002053G-page 32 © 2012-2016 Microchip Technology Inc.

Common C Interface

259 EEPROM Objects

The eeprom qualifier can be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices
generates a warning. Stack-based (auto and parameter) variables cannot use the
___eepron specifier.

2591 EXAMPLE

The following shows a variable qualified using eeprom.

__eeprom int serialNos[4];

2.59.2 DIFFERENCES

The 8-bit compilers have used the qualifier, eeprom, to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2593 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eeprom qualifierto eeprom, e.g.,
from:

eeprom char title[20];
to:
__eeprom char title[20];

For 16-bit compilers, change any occurrence of the eedata space attribute to
___eeprom, e.g., from:

int mainSw _ attribute ((space(eedata)));
to:
int eeprom mainSw;

2594 CAVEATS

MPLAB XC8 does not implement the eeprom qualifiers for any PIC18 devices; this
qualifier works as expected for other 8-bit devices.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 33

MPLAB® XC8 C Compiler User’s Guide

2.5.10

The interrupt (type) specifier can be used to indicate that a function is to act as
an interrupt service routine. The type is a comma-separated list of keywords that
indicate information about the interrupt function.

Interrupt Functions

The current interrupt types are:

<empty> Implement the default interrupt function.

low_priority The interrupt function corresponds to the low priority interrupt
source.

(MPLAB XC8 - PIC18 only)

high_priority The interrupt function corresponds to the high priority interrupt
source.

(MPLAB XCS8)

save(symbol-list) | Save the listed symbols on entry, and restore on exit.

(MPLAB XC16)

Specify the interrupt vector associated with this interrupt.
(MPLAB XC16 and XC8)

irq(irqid)

altirq(altirqgid) Specify the alternate interrupt vector associated with this
interrupt.

(MPLAB XC16)

base(address) Specify vector table address.

(MPLAB XC8)

preprologue(asm) | Specify assembly code to be executed before any
compiler-generated interrupt code.

(MPLAB XC16)

shadow Allow the ISR to utilize the shadow registers for context
switching.

(MPLAB XC16)

auto_psv The ISR will set the PSVPAG register and restore it on exit.

(MPLAB XC16)

no_auto_psv The ISR will not set the PSVPAG register.

(MPLAB XC16)

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices
generates a warning. If the argument to the interrupt specifier does not make
sense for the target device, a warning or error is issued by the compiler.

2.5.10.1 EXAMPLE

The following shows a function qualified using interrupt.

__interrupt (low priority)
if (TMROIE && TMROIF) {
TMROIF=0;
++tick count;

void getData (void) {

DS50002053G-page 34

© 2012-2016 Microchip Technology Inc.

Common C Interface

2.5.10.2 DIFFERENCES

The 8-bit compilers have used the interrupt and low priority qualifiers to
indicate this meaning for some devices. Interrupt routines were, by default, high priority.
The interrupt () specifier may now be used outside of the CCI.

The 16- and 32-bit compilers have used the interrupt attribute to define interrupt
functions.

2.5.10.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the interrupt qualifier, e.g., from:

void interrupt myIsr(void)
void interrupt low priority myLoIsr (void)

to the following, respectively:

void _ interrupt (high priority) myIsr(void)
void _ interrupt (low priority) myLoIsr(void)

For 16-bit compilers, change any occurrence of the interrupt attribute, e.g., from:

void _attribute ((interrupt(auto psv,irqg(52))))
_TlInterrupt (void);

to:
void _ interrupt (auto psv,irg(52))) TlInterrupt (void);

For 32-bit compilers, the interrupt () keyword takes two parameters, the vector
number and the (optional) IPL value. Change code that uses the interrupt attribute,
similar to these examples:

void attribute ((vector(0), interrupt (IPL7AUTO), nomipslé6))
myisr0 7A(void) {}

void _ attribute ((vector(l), interrupt (IPL6SRS), nomipsl6))
myisrl 6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void attribute ((vector(2), interrupt(), nomipsl6))
myisr2 RUNTIME (void) {}

to:
void _ interrupt (0, IPL7AUTO) myisr0O 7A(void) {}

void _ interrupt (1l,IPL6SRS) myisrl 6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void _ interrupt(2) myisr2 RUNTIME (void) {}

2.5.10.4 CAVEATS

None.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 35

MPLAB® XC8 C Compiler User’s Guide

2511 Packing Objects

The pack specifier can be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some compilers cannot pad structures with alignment gaps for some devices, and use
of this specifier for such devices is ignored.

25111 EXAMPLE

The following shows a structure qualified using pack, as well as a structure where
one member has been explicitly packed.

__pack struct DATAPOINT {
unsigned char type;
int value;

} x-point;

struct LINETYPE ({
unsigned char type;
__pack int start;
long total;

} line;

2.5.11.2 DIFFERENCES

The pack specifier is a new CClI specifier that is available with MPLAB XC8. This
specifier has no apparent effect since the device memory is byte addressable for all
data objects.

The 16- and 32-bit compilers have used the packed attribute to indicate that a
structure member was not aligned with a memory gap.

2.5.11.3 MIGRATION TO THE CCI

No migration is required for MPLAB XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, e.g.,
from:

struct DOT
{

char a;
int x[2] _ attribute ((packed));
}i

to:

struct DOT
{

char a;
__pack int x[2];
}i

Alternatively, you can pack the entire structure, if required.
2511.4 CAVEATS

None.

DS50002053G-page 36

© 2012-2016 Microchip Technology Inc.

Common C Interface

2512 Indicating Antiquated Objects

The deprecate specifier can be used to indicate that an object has limited longev-
ity and should not be used in new designs. It is commonly used by the compiler vendor
to indicate that compiler extensions or features can become obsolete, or that better
features have been developed and should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.12.1 EXAMPLE

The following shows a function that uses the deprecate keyword.

void _ deprecate getValue (int mode)
{

/).

}

2.5.12.2 DIFFERENCES

No deprecate feature was implemented on 8-bit compilers.
The 16- and 32-bit compilers have used the deprecated attribute (note the different
spelling) to indicate that objects should be avoided, if possible.

2.5.12.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the deprecated attribute to
__deprecate, e.g., from:

int attribute (deprecated) intMask;
to:

int deprecate intMask;

2.5.124 CAVEATS

None.

2513 Assigning Objects to Sections

The section () specifier can be used to indicate that an object should be located
in the named section (or psect, using MPLAB XC8 terminology). This is typically used
when the object has special and unique linking requirements that cannot be addressed
by existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.13.1 EXAMPLE

The following shows a variable which uses the section keyword.

int section("comSec") commonFlag;

2.5.13.2 DIFFERENCES

The 8-bit compilers have previously used the #pragma psect directive to redirect
objects to a new section, or psect; however, the section () specifier is the
preferred method to perform this task, even if you are not using the CCI.

The 16- and 32-bit compilers have used the section attribute to indicate a different
destination section name. The section () specifier works in a similar way to the
attribute.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 37

MPLAB® XC8 C Compiler User’s Guide

2.5.13.3 MIGRATION TO THE CCI

For MPLAB XC8, change any occurrence of the #pragma psect directive, such as:

#pragma psect text$Su=myText
int getMode (int target) {
/)

}

tothe section () specifier, as in:

int section ("myText") getMode (int target) {
/] ...
}

For 16- and 32-bit compilers, change any occurrence of the section attribute, e.g.,

from:

int attribute ((section("myVars"))) intMask;
to:

int section("myVars") intMask;

25134 CAVEATS

None.

2514 Specifying Configuration Bits

The #pragma config directive can be used to program the Configuration bits for a
device. The pragma has the form:

#pragma config setting = statel|value

where settingis aconfiguration setting descriptor (e.g., WDT), state is a descriptive
value (e.g., ON) and value is a numerical value.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

25141 EXAMPLE

The following shows Configuration bits being specified using this pragma.
#pragma config WDT=ON, WDTPS = 0x1A

2.5.14.2 DIFFERENCES

The 8-bit compilers have used the CONFIG () macro for some targets that did not
already have support for the #pragma config.

The 16-bit compilers have used a number of macros to specify the configuration
settings.

The 32-bit compilers supported the use of #pragma config.

DS50002053G-page 38 © 2012-2016 Microchip Technology Inc.

Common C Interface

2.5.14.3 MIGRATION TO THE CCI

For the 8-bit compilers, change any occurrence of the CONFIG () macro, e.g.,
__ CONFIG(WDTEN & XT & DPROT)

to the #pragma config directive, e.g.,

#pragma config WDTE=ON, FOSC=XT, CPD=ON

No migration is required if the #pragma config was already used.

For the 16-bit compilers, change any occurrence of the FOSC () or FBORPOR ()
macros attribute, e.g., from:

_FOSC (CSW_FSCM ON & EC_PLL16) ;

to:

#pragma config FCKSMEM = CSW ON FSCM ON, FPR = ECIO PLL16
No migration is required for 32-bit code.

25144 CAVEATS

None.

2.5.15 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example
__XC_ Compiled with an MPLAB XC compiler __XC_
__CCl_ Compiler is CCI compliant and CCI enforce- __Ccc1_

ment is enabled
_ XC##_ The specific XC compiler used (## can be 8, __XC8

16 o0r32)
___DEVICEFAMILY _ |The family of the selected target device __dsPIC30F
_ DEVICENAME |The selected target device name __18F452

2.5.15.1 EXAMPLE

The following shows code that is conditionally compiled dependent on the device
having EEPROM memory.

#ifdef _ xXCl6__

void interrupt(auto psv_) mylIsr(void)
#else
void interrupt (low priority) myIsr(void)
#endif

2.5.15.2 DIFFERENCES

Some of these CCI macros are new (forexample CCI), and others have different
names to previous symbols with identical meaning (e.g., 18F452 is now
__18F452).

© 2012-2016 Microchip Technology Inc. DS50002053G-page 39

MPLAB® XC8 C Compiler User’s Guide

2.5.15.3 MIGRATION TO THE CCI

Any code that uses compiler-defined macros needs review. Old macros will continue to
work as expected, but they are not compliant with the CCI.

25154 CAVEATS

None.

2.516 In-line Assembly

The asm () statement can be used to insert assembly code in-line with C code. The
argument is a C string literal that represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.5.16.1 EXAMPLE

The following shows a MOVLW instruction being inserted in-line.
asm("MOVLW foobar");

2.5.16.2 DIFFERENCES

The 8-bit compilers have used either the asm () or #asm ... #endasm constructs to
insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

2.5.16.3 MIGRATION TO THE CCI

For 8-bit compilers, change any instance of #asm ... #endasm, so that each instruction
in the #asm block is placed in its own asm () statement, e.g., from:
#asm

MOVLW 20

MOVWF i

CLRF Ii+1
#endasm

to:

asm ("MOVLW20") ;
asm("MOVWE i");

asm ("CLRFIi+1");

No migration is required for the 16- or 32-bit compilers.
2.5.16.4 CAVEATS

None.

DS50002053G-page 40

© 2012-2016 Microchip Technology Inc.

Common C Interface

26 COMPILER FEATURES
The following item details the compiler options used to control the CCI.

2.6.1 Enabling the CCI

It is assumed that you are using the MPLAB X IDE to build projects that use the CCI.
The widget in the MPLAB X IDE Project Properties to enable CCI conformance is Use
CCI Syntax in the Compiler category.

If you are not using this IDE, then the command-line options are --EXT=cci for
MPLAB XC8 or -mcci for MPLAB XC16 and XC32.

2.6.1.1 DIFFERENCES
This option has never been implemented previously.
26.1.2 MIGRATION TO THE CCI

Enable the option.

2.6.1.3 CAVEATS

None.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 41

MPLAB® XC8 C Compiler User’s Guide

NOTES:

DS50002053G-page 42 © 2012-2016 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 3. How To’s

3.1 INTRODUCTION

This section contains help and references for situations that are frequently encountered
when building projects for Microchip 8-bit devices. Click the links at the beginning of
each section to assist in finding the topic relevant to your question. Some topics are
indexed in multiple sections.

Start here:

* Installing and Activating the Compiler

* Invoking the Compiler

» Writing Source Code

» Getting My Application to Do What | Want
* Understanding the Compilation Process

» Fixing Code That Does Not Work

3.2 INSTALLING AND ACTIVATING THE COMPILER

This section details questions that might arise when installing or activating the compiler.

* How Do I Install and Activate My Compiler?
* How Can I Tell if the Compiler has Activated Successfully?
* Can | Install More Than One Version of the Same Compiler?

3.21 How Do | Install and Activate My Compiler?

Installation of the compiler and activation of the license are performed simultaneously
by the XC compiler installer. The guide Installing and Licensing MPLAB XC C Compil-
ers (DS52059) is available on www.microchip.com/compilers, under the Documenta-
tion tab. It provides details on single-user and network licenses, as well as how to
activate a compiler for evaluation purposes.

3.2.2 How Can | Tell if the Compiler has Activated Successfully?

If you think the compiler cannot have installed correctly or is not working, it is best to
verify its operation outside of MPLAB X IDE to isolate possible problems.

The xc1m application can be queried to determine the status of your compiler. From
your terminal or DOS-prompt, type the following line.

"C:\Program Files\Microchip\xc8\v1l.00\bin\xclm" -status

© 2012-2016 Microchip Technology Inc. DS50002053G-page 43

MPLAB® XC8 C Compiler User’s Guide

3.23 Can | Install More Than One Version of the Same Compiler?

Yes, the compilers and installation process has been designed to allow you to have
more than one version of the same compiler installed, and you can easily move
between the versions by changing options in MPLAB X IDE; see Section 3.3.4 “How
Can | Select Which Compiler | Want to Build With?”.

Compilers should be installed into a directory whose name is related to the compiler
version. This is reflected in the default directory specified by the installer. For example,
the 1.00 and 1.10 MPLAB XC8 compilers would typically be placed in separate
directories.

C:\Program Files\Microchip\xc8\v1l.00\
C:\Program Files\Microchip\xc8\v1.10\

DS50002053G-page 44

© 2012-2016 Microchip Technology Inc.

How To’s

3.3

INVOKING THE COMPILER

This section discusses how the compiler is run, on the command-line or from the
MPLAB X IDE. It includes information about how to get the compiler to do what you
want it to do, in terms of options and the build process itself.

* How Do | Compile From Within MPLAB X IDE?

* How Do | Compile on the Command-line?

* How Do | Compile Using a Make Utility?

* How Can I Select Which Compiler | Want to Build With?

* How Can | Change the Compiler's Operating Mode?

* How Do I Build Libraries?

* How Do | Know What Compiler Options Are Available and What They Do?

* How Do | Know What the Build Options in MPLAB X IDE Do?

* What is Different About an MPLAB X IDE Debug Build?

See, also, the following linked information in other sections.

* What Do | Need to Do When Compiling to Use a Debugger?
* How Do I Use Library Files in My Project?

* How Do I Place a Function Into a Unique Section?

* What Optimizations Are Employed by the Compiler?

3.31 How Do | Compile From Within MPLAB X IDE?

MPLAB X IDE User’s Guide and online help provide directions for setting up a project
in the MPLAB X integrated development environment.

Alternatively, download the MPLAB® XC8 User’s Guide for Embedded Engineers
(DS50002400) or open the MPLAB® XC8 Getting Started Guide (DS50002173) from
the compiler’s docs directory.

3.3.2 How Do | Compile on the Command-line?

The compiler driver is called xc8 for all 8-bit PIC devices; e.g., in Windows, it is named
xc8.exe. This application should be invoked for all aspects of compilation. Itis located
in the bin directory of the compiler distribution. Avoid running the individual compiler
applications (such as the assembler or linker) explicitly. You can compile and link in the
one command, even if your project is spread among multiple source files.

The driver is introduced in Section 4.2 “Invoking the Compiler”. See

Section 3.3.4 “How Can | Select Which Compiler | Want to Build With?”, to ensure you
are running the correct driver if you have more than one installed. The command-line
options to the driver are detailed in Section 4.7 “MPLAB XC8 Driver Options”. The files
that can be passed to the driver are listed and described in Section 4.2.3 “Input File
Types”.

3.3.3 How Do | Compile Using a Make Utility?

When compiling using a make utility (such as make), the compilation is usually per-
formed as a two-step process: first generating the intermediate files, then the final com-
pilation and link step to produce one binary output. This is described in

Section 4.3.3 “Multi-Step Compilation”.

The MPLAB XC8 compiler uses a unique technology called OCG that uses an interme-
diate file format that is different than traditional compilers (including XC16 and XC32).
The intermediate file format used by XC8 is a p-code file (. p1 extension), not an object
file. Generating object files as an intermediate file for multi-step compilation defeats
many of the advantages of this technology.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 45

MPLAB® XC8 C Compiler User’s Guide

3.34 How Can | Select Which Compiler | Want to Build With?

The compilation and installation process has been designed to allow you to have more
than one compiler installed at the same time. You can create a projectin MPLAB X IDE
and then build this project with different compilers by simply changing a setting in the
project properties.

To select which compiler is actually used when building a project under MPLAB X IDE,
go to the Project Properties dialog. Select the Configuration category in the Project
Properties dialog (Conf: [default]).Alistof MPLAB XC8 compilers is shown in the
Compiler Toolchain, on the far right. Select the compiler that you require.

Once selected, the controls for that compiler are then shown by selecting the MPLAB
XC8 global options, MPLAB XC8 Compiler and MPLAB XC8 Linker categories. These
reveal a pane of options on the right. Note that each category has several panes which
can be selected from a pull-down menu that is near the top of the pane.

3.35 How Can | Change the Compiler's Operating Mode?

The compiler’s operating mode (Free, Standard or PRO, see Section 1.2 “Compiler
Description and Documentation”) can be specified as a command line option when
building on the command line; see Section 4.8.39 “--MODE: Choose Compiler Operat-
ing Mode”. If you are building under MPLAB X IDE, there is a Project Properties selec-
tor in the XC8 Compiler category, under the Optimizations option selector; see
Section 4.9.2 “Compiler Category”.

You can only select modes that your license entitles you to use. The Free mode is
always available; Standard or PRO can be selected if you have purchased a license for
those modes.

3.3.6 How Do | Build Libraries?

Note that XC8 uses a different code generation framework (OCG) that uses additional
library files to those used by traditional compilers (including XC16 and XC32). See
Section 4.3.1 “The Compiler Applications”, for general information on the library types
available and how they fit into the compilation process.

When you have functions and data that are commonly used in applications, you can
either make all the C source and header files available so that other developers can
copy these into their projects. Alternatively you can bundle these source files up into a
library which, along with the accompanying header files, can be linked into a project.

Libraries are more convenient because there are fewer files to deal with. Compiling
code from a library can also be fractionally faster. However, libraries do need to be
maintained. XC8 must use LPP libraries for library routines written in C; the old-style
LIB libraries are used for library routines written in assembly source. It is recommended
that even these libraries be rebuilt if your project is moving to a new compiler version.

Using the compiler driver, libraries can be built by listing all of the files that are to be
included into the library on the command line. None of these files should contain a
main () function, nor settings for Configuration bits or any other such data. Use the
--QUTPUT=1pp option; see Section 4.8.47 “--OUTPUT= type: Specify Output File
Type”, to indicate that a library file is required. For example:

XC8 --chip=16£f877a --output=lpp lcd.c utils.c io.c

creates a library file called 1cd. 1pp. You can specify another name using the -0
option; see Section 4.8.9 “-O: Specify Output File”, or just rename the file.

DS50002053G-page 46

© 2012-2016 Microchip Technology Inc.

How To’s

To build a library in MPLAB X IDE, create a regular project.! Add your source files in
the usual way. Add in the option --0UTPUT=1pp to the Additional Options field in the
MPLAB XC8 Linker category. Click Build. The IDE will issue a warning about the HEX
file being missing, but this can be ignored. The library output can be found in the
dist/default/production folder of the project directory.

Note that if you intend to step through your library code at a C level in MPLAB X IDE,
you will need to place the library source files so that the relative path between their
location and the project that is using them is the same as the relative path between
where the library build command was executed and where the source files were
located when they were built.

3.3.7 How Do | Know What Compiler Options Are Available and What
They Do?

A list of all compiler options can be obtained by using the -—HELP option on the com-
mand line; see Section 4.8.34 “--HELP: Display Help”. If you give the --HELP option
an argument, being an option name, it will give specific information on that option, for
example --HELP=runtime.

Alternatively, all options are all listed in Section 4.8 “Option Descriptions” in this user’s
guide. If you are compiling in MPLAB X IDE, see Section 4.9 “MPLAB X Option
Equivalents”.

3.3.8 How Do | Know What the Build Options in MPLAB X IDE Do?

Each of the widgets and controls, in the MPLAB X IDE Project Properties, map directly
to one command-line driver option or suboption, in most instances. Section 4.8 “Option
Descriptions” in this user’s guide lists all command-line driver options and includes
cross references, where appropriate, to corresponding sections that relate to access-
ing those options from the IDE. (see Section 4.9 “MPLAB X Option Equivalents”).

3.3.9 What is Different About an MPLAB X IDE Debug Build?

In MPLAB X, there are distinct build buttons and menu items to build (production) a
project and to debug a project.

While there are many differences between the builds in the IDE — in the XC8 compiler,
there is very little that is different between the two types of build. The main difference
is the setting of a preprocessor macro called DEBUG, which is assigned 1 when a
performing a debug build. This macro is not defined for production builds.

You can make code in your source conditional on this macro using #1ifdef directives,
etc., (see Section 5.14.2 “Preprocessor Directives”); so that you can have your pro-
gram behave differently when you are still in a development cycle. Some compiler
errors are easier to track down after performing a debug build.

In MPLAB X IDE, memory is reserved for your debugger (if selected) only when you
perform a debug build. See Section 3.5.4 “What Do | Need to Do When Compiling to
Use a Debugger?” for more information.

1. At present, the IDE library projects are incompatible with MPLAB XC8.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 47

MPLAB® XC8 C Compiler User’s Guide

3.4 WRITING SOURCE CODE

This section presents issues that pertain to the source code you write. It has been
subdivided into the sections listed below.

» C Language Specifics

» Device-Specific Features

» Memory Allocation

» Variables

* Functions

* Interrupts

» Assembly Code

3.41 C Language Specifics

This section discusses source code issues that directly relate to the C language itself,
but are commonly asked.

* When Should | Cast Expressions?

» Can Implicit Type Conversions Change the Expected Results of My Expressions?
* How Do | Enter Non-English Characters Into My Program?

* How Can | Use a Variable Defined in Another Source File?

3.41.1 WHEN SHOULD | CAST EXPRESSIONS?

Expressions can be explicitly case using the cast operator -- a type in round brackets,
e.g., (int).In all cases, conversion of one type to another must be done with caution
and only when absolutely necessary.

Consider the example:

unsigned long 1;
unsigned int i;

i =1;

Here, a 1ong type is being assigned to an int type, and the assignment will truncate
the value in 1. The compiler will automatically perform a type conversion from the type
of the expression on the right of the assignment operator (1ong) to the type of the
Ivalue on the left of the operator (int).This is called an implicit type conversion. The
compiler typically produces a warning concerning the potential loss of data by the trun-
cation.

A cast to type int is not required and should not be used in the above example if a
longto int conversion was intended. The compiler knows the types of both operands
and performs the conversion accordingly. If you did use a cast, there is the potential for
mistakes if the code is later changed. For example, if you had:

i = (int)1;

the code works the same way; but if, in future, the type of i is changed to a 1ong, for
example, then you must remember to adjust the cast, or remove it, otherwise the con-
tents of 1 will continue to be truncated by the assignment, which cannot be correct.
Most importantly, the warning issued by the compiler will not be produced if the cast is
in place.

DS50002053G-page 48 © 2012-2016 Microchip Technology Inc.

How To’s

Only use a cast in situations where the types used by the compiler are not the types
that you require. For example, consider the result of a division assigned to a floating
point variable:

int i, Jj;

float f1;

£1 = i/9;

In this case, integer division is performed, then the rounded integer result is converted
toa float format. So, if i contained 7 and j contained 2, the division yields 3 and this
is implicitly converted to a f1oat type (3.0) and then assigned to £1. If you wanted the
division to be performed in a f1oat format, then a cast is necessary:

fl = (float)i/j;

(Casting either 1 or j forces the compiler to encode a floating-point division.) The
result assigned to £1 now is 3.5.

An explicit cast can suppress warnings that might otherwise have been produced. This
can also be the source of many problems. The more warnings the compiler produces,
the better chance you have of finding potential bugs in your code.

3.4.1.2 CAN IMPLICIT TYPE CONVERSIONS CHANGE THE EXPECTED
RESULTS OF MY EXPRESSIONS?

Yes! The compiler will always use integral promotion and there is no way to disable this;
see Section 5.6.1 “Integral Promotion”. In addition, the types of operands to binary
operators are usually changed so that they have a common type, as specified by the C
Standard. Changing the type of an operand can change the value of the final expres-
sion, so it is very important that you understand the type C Standard conversion rules
that apply when dealing with binary operators. You can manually change the type of an
operand by casting; see Section 3.4.1.1 “When Should | Cast Expressions?”.

3.41.3 HOWDO I ENTER NON-ENGLISH CHARACTERS INTO MY PROGRAM?

The ANSI standard (and accordingly, the MPLAB XC8 C compiler) does not support
extended characters set in character and string literals in the source character set. See
Section 5.4.6 “Constant Types and Formats”, to see how these characters can be
entered using escape sequences.

3.4.14 HOW CAN | USE A VARIABLE DEFINED IN ANOTHER SOURCE FILE?

Provided the variable defined in the other source file is not static (see

Section 5.5.2.1.1 “Static Variables”) or auto (see Section 5.5.2.2 “Auto Variable Allo-
cation and access”), then adding a declaration for that variable into the current file will
allow you to access it. A declaration consists of the keyword extern in addition to the
type and the name of the variable, as specified in its definition, e.g.,

extern int systemStatus;
This is part of the C language. Your favorite C textbook will give you more information.

The position of the declaration in the current file determines the scope of the variable.
Thatis, if you place the declaration inside a function, it will limit the scope of the variable
to that function. If you place it outside of a function, it allows access to the variable in
all functions for the remainder of the current file.

Often, declarations are placed in header files and then they are #included into the C
source code; see Section 5.14.2 “Preprocessor Directives”.

© 2012-2016 Microchip Technology Inc. DS50002053G-page 49

MPLAB® XC8 C Compiler User’s Guide

3.4.2 Device-Specific Features

This section discusses the code that needs to be written to set up or control a feature
that is specific to Microchip PIC devices.

* How Do | Set the Configuration Bits?

* How Do | Use the PIC Device’s ID Locations?

* How Do | Determine the Cause of Reset on Mid-range Parts?
* How Do | Access SFRs?

* How Do I Place a Function Into a Unique Section?

See, also, the following linked information in other sections.
» What Do | Need to Do When Compiling to Use a Debugger?

3.421 HOWDO ISET THE CONFIGURATION BITS?

These should be set in your code using either a macro or a pragma. MPLAB 8 IDE
allowed you to set these bits in a dialog, but MPLAB X IDE requires that they be spec-
ified in your source code. See Section 5.3.5 “Configuration Bit Access”, for details
about how these are set.

3.4.22 HOW DO | USE THE PIC DEVICE'’S ID LOCATIONS?

There is a supplied macro or pragma that allows these values to be programmed; see
Section 5.3.7 “ID Locations”.

3.423 HOW DO | DETERMINE THE CAUSE OF RESET ON MID-RANGE
PARTS?

The TO and PD bits in the STATUS register allow you to determine the cause of a
Reset. However, these bits are quickly overwritten by the runtime startup code that is
executed before main is executed; see Section 5.10.1 “Runtime Startup Code”. You
can have the STATUS register saved into a location that is later accessible from C
code, so that the cause of Reset can be determined by the application after it is running
again; see Section 5.10.1.4 “STATUS Register Preservation”.

3.4.24 HOW DO | ACCESS SFRS?

The compiler ships with header files; see Section 5.3.3 “Device Header Files”, that
define the variables that are mapped over the top of memory-mapped SFRs. Since
these are C variables, they can be used like any other C variables and no new syntax
is required to access these registers.

Bits within SFRs can also be accessed. Individual bit-wide variables are defined that
are mapped over the bits in the SFR. Bit-fields are also available in structures that map
over the SFR as a whole. You can use either in your code; see Section 5.3.6 “Using
SFRs From C Code”.

The name assigned to the variable is usually the same as the name specified in the
device data sheet. See Section 3.4.2.5 “How Do | Find The Names Used to Represent
SFRs and Bits?”, if these names are not recognized.

DS50002053G-page 50 © 2012-2016 Microchip Technology Inc.

How To’s

3.425 HOWDO I FIND THE NAMES USED TO REPRESENT SFRS AND BITS?

Special function registers and the bits within them are accessed via special variables
that map over the register; see Section 3.4.2.4 “How Do | Access SFRs?”. However,
the names of these variables sometimes differ from those indicated in the data sheet
for the device you are using.

If required, you can examine the <xc . h> header file to find the device-specific header
file that is relevant for your device. This file will define the variables that allow access
to these special variables. However, an easier way to find these variable names is to
look in any of the preprocessed files left behind from a previous compilation. Provided
the corresponding source file included <xc.h>, the preprocessed file will show the
definitions for all the SFR variables and bits for your target device.

If you are compiling under MPLAB X IDE, the preprocessed file(s) are left under the
build/default/production directory of your project for regular builds, or under
build/default/debug for debug builds. They are typically left in the source file
directory if you are compiling on the command line. These files have a . pre extension.

343 Memory Allocation

Here are questions relating to how your source code affects memory allocation.

* How Do I Position Variables at an Address | Nominate?
* How Do I Place a Variable Into a Unique Section?

» How Do I Position a Variable Into an Address Range?

* How Do I Position Functions at an Address | Nominate?
* How Do I Place Variables in Program Memory?

* How Do I Place a Function Into a Unique Section?

* How Do I Position a Function Into an Address Range?

* How Do I Place a Function Into a Unique Section?

See, also, the following linked information in other sections.

» Why Are Some Objects Positioned Into Memory That | Reserved?
* How Do | Use High-Endurance Flash for Data, Not Code?

3.4.3.1 HOW DO | POSITION VARIABLES AT AN ADDRESS | NOMINATE?

The easiest way to do this is to make the variable absolute by using the @ address
construct,